The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure Scientific paper

Main Article Content

Nemanja Mijin
https://orcid.org/0000-0001-5328-755X
Jelica Milošević
https://orcid.org/0000-0001-8418-5900
Nenad Filipović
https://orcid.org/0000-0003-2982-5324
Dragana Mitić
https://orcid.org/0000-0001-5167-808X
Katarina Anđelković
https://orcid.org/0000-0003-1178-8326
Natalija Polović
https://orcid.org/0000-0002-9127-2014
Tamara Todorović
https://orcid.org/0000-0002-7740-3639

Abstract

Previously, the cytotoxic actions of five Pd(II) complexes with biden­tate N-heteroaromatic chelators (complexes 15) on a palette of several cancer cell lines were investigated. However, the results of the cytotoxic activity did not correlate with the hydrophobic character of the complexes. To gain further insight into the structure–activity relationship, essential for the design of novel potential drugs, other factors, such as non-specific interactions with cellular proteins, have to be taken into account. To explore the potential non-specific influence of the complexes on protein structures, ovalbumin (OVA) was chosen as a model system to mimic cellular non-specific crowding environ­ments with high protein concentrations. A Fourier-transform infrared spectro­scopy study implied that the binding of 3 and 4 led to only moderate alter­nat­ions in the secondary structures of the protein, without the possibility to penet­rate into hydrophobic core of the protein and disruption of protein native fold. Contrary, the effect of complex 5 on OVA secondary structures was concen­tration-dependent. While the lower concentration of complex 5 had no effect on OVA structure, a doubled concentration of complex 5 led to complete dis­ruption of the content native-like secondary structures. The concentration-dep­endent effect of complex 5 on the changes in secondary structures and con­siderable increase in the exposure of OVA hydrophobic surfaces to water may be related to a potential crosslinking that leads to OVA aggregation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Mijin, “The effect of non-specific binding of Pd(II) complexes with N-heteroaromatic hydrazone ligands on the protein structure: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 10, pp. 1143–1156, Jun. 2022.
Section
Inorganic Chemistry

Funding data

References

D. M. Cheff, M. D. Hall, J. Med. Chem. 60 (2017) 4517 (https://doi.org/10.1021/acs.jmedchem.6b01351)

S. Dasari, P. Bernard Tchounwou, Eur. J. Pharmacol. 740 (2014) 364 (https://doi.org/10.1016/j.ejphar.2014.07.025)

N. J. Wheate, S. Walker, G. E. Craig, R. Oun, Dalton Trans. 39 (2010) 8113 (https://doi.org/10.1039/c0dt00292e)

T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev. 116 (2016) 3436 (https://doi.org/10.1021/acs.chemrev.5b00597)

S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi, M. A. Zoroddu, Coord. Chem. Rev. 284 (2015) 329 (https://doi.org/10.1016/j.ccr.2014.08.002)

M. N. Alam, F. Huq, Coord. Chem. Rev. 316 (2016) 36 (https://doi.org/10.1016/J.CCR.2016.02.001)

A. R. Kapdi, I. J. S. Fairlamb, Chem. Soc. Rev. 43 (2014) 4751 (https://doi.org/10.1039/C4CS00063C)

M. Fanelli, M. Formica, V. Fusi, L. Giorgi, M. Micheloni, P. Paoli, Coord. Chem. Rev. 310 (2016) 41 (https://doi.org/10.1016/j.ccr.2015.11.004)

N. Filipovicć, S. Grubišić, M. Jovanović, M. Dulović, I. Marković, O. Klisurić, A. Marinković, D. Mitić, K. Anđelković, T. Todorović, Chem. Biol. Drug Des. 84 (2014) 333 (https://doi.org/10.1111/cbdd.12322)

S. K. Bjelogrlić, T. R. Todorović, M. Kojić, M. Senćanski, M. Nikolić, A. Višnjevac, J. Araškov, M. Miljković, C. D. Muller, N. R. Filipović, J. Inorg. Biochem. 199 (2019) 110758 (https://doi.org/10.1016/j.jinorgbio.2019.110758)

,A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7 (2017) 42717 (https://doi.org/10.1038/srep42717)

A. Daina, O. Michielin, V. Zoete, J. Chem. Inf. Model. 54 (2014) 3284 (https://doi.org/10.1021/CI500467K)

M. G. Mendoza-Ferri, C. G. Hartinger, M. A. Mendoza, M. Groessl, A. E. Egger, R. E. Eichinger, J. B. Mangrum, N. P. Farrell, M. Maruszak, P. J. Bednarski, F. Klein, M. A. Jakupec, A. A. Nazarov, K. Severin, B. K. Keppler, J. Med. Chem. 52 (2009) 916 (https://doi.org/10.1021/JM8013234)

J. A. Huntington, P. E. Stein, J. Chromatogr., B 756 (2001) 189 (https://doi.org/10.1016/S0378-4347(01)00108-6)

H. Y. Hu, H. N. Du, J. Protein Chem. 19 (2000) 177 (https://doi.org/10.1023/A:1007099502179)

M. Sogami, S. Era, T. Koseki, N. Nagai, J. Pept. Res. 50 (1997) 465 (https://doi.org/10.1111/J.1399-3011.1997.TB01210.X)

C. Lara, S. Gourdin-Bertin, J. Adamcik, S. Bolisetty, R. Mezzenga, Biomacromolecules 13 (2012) 4213 (https://doi.org/10.1021/BM301481V)

J. Li, S. Zhang, C. C. Wang, J. Biol. Chem. 276 (2001) 34396 (https://doi.org/10.1074/JBC.M103392200)

B. Van Den Berg, R. J. Ellis, C. M. Dobson, EMBO J. 18 (1999) 6927 (https://doi.org/10.1093/EMBOJ/18.24.6927)

C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 53 (2020) 226 (https://doi.org/10.1107/S1600576719014092)

N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminform. 3 (2011) 1 (https://doi.org/10.1186/1758-2946-3-33/TABLES/2)

J. Milošević, J. Petrić, B. Jovčić, B. Janković, N. Polović, Spectrochim. Acta, A 229 (2020) 117882 (https://doi.org/10.1016/J.SAA.2019.117882)

J. Milošević, R. Prodanović, N. Polović, Molecules 26 (2021) 970 (https://doi.org/10.3390/MOLECULES26040970)

C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 46 (2001) 3 (https://doi.org/10.1016/S0169-409X(00)00129-0)

C. Aldrich, C. Bertozzi, G. I. Georg, L. Kiessling, C. Lindsley, D. Liotta, K. M. Merz, A. Schepartz, S. Wang, ACS Cent. Sci. 3 (2017) 143 (https://doi.org/10.1021/ACSCENTSCI.7B00069)

T. Sterling J. J. Irwin, J. Chem. Inf. Model. 55 (2015) 2324 (https://doi.org/10.1021/ACS.JCIM.5B00559)

R. Wang, Y. Fu, L. Lai, J. Chem. Inf. Comput. Sci. 37 (1997) 615 (https://doi.org/10.1021/CI960169P)

S. A. Wildman, G. M. Crippen, J. Chem. Inf. Comput. Sci. 39 (1999) 868 (https://doi.org/10.1021/CI990307L)

I. Moriguchi, H. Hirano, I. Nakagome, Chem. Pharm. Bull. 42 (1994) 976 (https://doi.org/10.1248/CPB.42.976)

I. Moriguchi, S. Hirono, Q. Liu, Izum. Nakagome, Y. Matsushita, Chem. Pharm. Bull. 40 (1992) 127 (https://doi.org/10.1248/CPB.40.127)

B. Rašković, N. Babić, J. Korać, N. Polović, J. Serb. Chem. Soc. 80 (2015) 613 (https://doi.org/10.2298/JSC140901007R)

A. Dong, J. D. Meyer, J. L. Brown, M. C. Manning, J. F. Carpenter, Arch. Biochem. Biophys. 383 (2000) 148 (https://doi.org/10.1006/ABBI.2000.2054)

G. Vedantham, H. G. Sparks, S. U. Sane, S. Tzannis, T. M. Przybycien, Anal. Biochem. 285 (2000) 33 (https://doi.org/10.1006/ABIO.2000.4744)

D. Smith, V.B. Galazka, N. Wellner, I. G. Sumner, Int J. Food Sci Tech 35 (2000) 361 (https://doi.org/10.1046/j.1365-2621.2000.00395.x)

J. S. Cristóvão, B. J. Henriques, C. M. Gomes, Methods Mol. Biol. 1873 (2019) 3 (https://doi.org/10.1007/978-1-4939-8820-4_1)

A. Barth, Biochim. Biophys. Acta - Bioenergy 1767 (2007) 1073 (https://doi.org/10.1016/J.BBABIO.2007.06.004)

T. M. Greve, K. B. Andersen, O. F. Nielsen, Spectroscopy 22 (2008) 405 (https://doi.org/10.3233/SPE-2008-0358)

A. N. L. Batista, J. M. Batista, V. S. Bolzani, M. Furlan, E. W. Blanch, Phys. Chem. Chem. Phys. 15 (2013) 20147 (https://doi.org/10.1039/C3CP53525H)

P. Huang, A. Dong, W. S. Caughey, J. Pharm. Sci. 84 (1995) 387 (https://doi.org/10.1002/JPS.2600840402)

S. Roy, B. Jana, B. Bagchi, J. Chem. Phys. 136 (2012) 115103 (https://doi.org/10.1063/1.3694268)

A. Tjernberg, N. Markova, W. J. Griffiths, D. Hallén, J. Biomol. Screen. 11 (2006) 131 (https://doi.org/10.1177/1087057105284218)

T. Arakawa, Y. Kita, S. N. Timasheff, Biophys. Chem. 131 (2007) 62 (https://doi.org/10.1016/J.BPC.2007.09.004)

S. Tunçer, R. Gurbanov, I. Sheraj, E. Solel, O. Esenturk, S. Banerjee, Sci. Rep. 8 (2018) 14828 (https://doi.org/10.1038/s41598-018-33234-z)

C. X. Wang, F. F. Yan, Y. X. Zhang, L. Ye, J. Photochem. Photobiol., A 192 (2007) 23 (https://doi.org/10.1016/J.JPHOTOCHEM.2007.04.032)

E. Schönbrunn, S. Eschenburg, K. Luger, W. Kabsch, N. Amrhein, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 6345 (https://doi.org/10.1073/PNAS.120120397)

M. S. Celej, G. G. Montich, G. D. Fidelio, Protein Sci. 12 (2003) 1496 (https://doi.org/10.1110/PS.0240003).

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.